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ABSTRACT

In this paper two smilar smplified nonquasi-
static approaches are applied for high-frequency
large-signal FET prediction. Both account for
low-frequency dispersion and use a smplified
extraction process through the use of linear
delays. Excedlent results are obtained from dc up
to the device f1 frequencies, even when f; is 120
GHz. For low-frequency prediction a smple
guas-static extringc approach can produce
excelent results thus further smplifying
modelling. The influence of including the low-
frequency dispersion modelling is aso taken into
account.

INTRODUCTION

As a genera purpose modelling tool (device and
process independent, dc and small-large rf signa
predictors), table-based empiricd models have
been successfully used in CAD of MMICs. The
dense set of measurements required for an
accurate model behaviour and the non-uniqueness
of the extracted large-signal relations are some of
the disadvantages that have been previoudy
discussed.

It is adso important to consider the usable
bandwidth of these models. Model improvement
a low-frequency can be achieved by accounting
for low-frequency dispersion using the Root
proposal [1], but that model, as initidly
published, has important limitations in the high-
frequency regime. In general, table-based models
have difficultiesinincluding “r;” type elements (or
guadratic frequency dependencies of the vy-
parameters) in a fully consstent manner.
Nonquasi-static approaches have been suggested
which model such effects[2,3] through the use of
nonlinear delay functions. However, in most
cases, the increase in model bandwidth is

achieved a the expense of the need for more
measurements along with more complex model
generation and implementation. Taking those
models as sarting point, a new moddling
approach is suggested, which maintains a wide
bandwidth but also has asimplified extraction and
implementation approach.

MODELLING APPROACH

The first model (modell) accounts for both the
low-frequency dispersion, using a honquasi-static
current formulation, see Root et al.[1], in the
input and in the output of the device, and the high-
frequency dynamic behaviour, through a
nonquasi-static charge formulation, see Daniels et
a.[2]. Hence, the current a i-th termind is
(following Root formulation):

1) = (™1 (Vs Vo) + O 1ty 119" (Vg Vo) +
QM () C14q, d
+T , h(t)_l"'Txa (@]

where Q™ is in this case the nonquasi-static
charge at i-th terminal, expressed as[2]:
dQ™M(Vas V,

QM(t) = Q(Ves Vbs) ~ Ti (Vas: Vbs) w @
Q" (charge relation) and 7; (delay relation) are
quas-static  functions of nodal voltages. T,
represents a time for redistribution of charge a i-
th terminal. For this model the resulting small-
signd y-parameters are [4]:

. wr j G
Y =i vy = g + AP0 (gae - gy + Sk (3)

1+ jor, 1+ jour;
Where g(?(c - dli|0W/WK’ giil(c - dlihigh /WK’
G =0 M, 1=GD, W =VgsVps  and

Vi = Vgs, Vgs- MOdel2 is formulated by considering
an approximation of eg. 2, suggested in [4,5].
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In this case the following smal-signal y-
parameters result:

, _ dc jor ac
Yk = Gk +—1+ja§rx(gi
Equations 3 and 5 can be andyzed in three
different cases:

a) w — 0.DC case. In both approaches

~ g1 + je(1- jor;)oy ®)

Y = 6% ®)
b) wr, >>1.

Yy = g + ANk model1

ik = Gik 1+ jor, @

Y = OF + PTG + jag  model2 ®)

C) wt, >>1and wr; <<1. In both models
Yii = g + i ©)

as can be obtained in Root model in the range
when wrt, >>1. Egq. 8 is a frequency
approximation of model1 when w?1? <<1. Itis
not as restrictive as Root approach and is able to
model the high-frequency quadratic dependencies
of the y-parameters given in model2. As it will
be demonstrated, both models can predict
excellent results at least up to fr.
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Figure 1: | n%ut and output delay functions vs. gate voltage.

0.6x100 um= P-HEMT. Frequency range for extraction 0.5
to 40 GHz.

0%, ¢, and 1, are determined from the small-
signal y-parameters measured in the frequency
range where wrt, >>1(i.e. using eq. 7 in model1
and eg. 8 in model2). This ‘curvefitting' has
been performed using robust estimation in order

to minimize the contributions of noisy data to the
generation process [4]. Once these parameters are
obtained versus bias, it is possible to generate
Il and Q° through a theoreticaly path-
independent contour integral process. I}OW
relations are obtained from DC measurements.

500. 0E+06

hbfreq 118.5E+09 | 500. 0E+06 hbf req 118. 5E+09 B

Figure 2. Measured (doted) and simulated (line) s
parameters. 0.15x120 um2 P-HEMT. Frequency range:
0.5t0 1185 GHz. Vgs0=0.3 V, Vds0=1.5 V.

When generating these models, it is necessary to
perform multifrequency S-parameter
measurements in afine mesh of bias; thisisavery
time consuming process. To overcome that a
congtant 1, function was used (as suggested in
[5]) which alows for simplified model extraction,
generation and implementation. Figure 1 shows
an example of the bias dependence of the delay
function in the input and output of the device for
model1. It can be seen that 1, is aweak function
of biasin most of the I-V range. By considering it
aconstant, it is possible to extract g and c,
from single frequency measurements using eq. 9
in both models (as in Root approach).
Afterwards, it is only necessary to perform a
reduced set of measurements over frequency a
various bias points to extract, using eq. 7 for
modell or 8 for model2, an estimation of the
congtant valuefor T, .

DISCUSSION

Models 1 and 2 have been generated for 120 GHz
fr P-HEMT 0-doped devices fabricated at the
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Fraunhofer  Ingtitut  (IAF).  S-parameters
measurements from 0.5 to 120 GHz have been
performed using the system described in [6] and
they have been used for parasitic extraction and
model validation. For nonlinear model extraction,
we have used dc and s-parameters Bias Scans, as
proposed in [7], dlowing a quick way of
obtaining a detailed nonlinear  device
characterization. The measured bias dependent 2
GHz intrinsc s-parameters were used to generate
theintrinsic large-signal constitutive relations [9].
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Figure 3: Measured (star) and simulated (line) intrinsic y;,
parameter. 0.15x120 um? P-HEMT. Frequency range : 0.5
to 118.5 GHz. Bias: Vgs0=0.3 V, Vds0=1.5V.

For extracting 1, values, measurements were
performed in the range 0.5 to 50 GHz (for both
models) in various bias points. A rough
estimation of 1, can aso be obtaned from
classical linear models; for example, T4 can be
obtained from r* cg product. Large-signal
measurements have been done using an on-wafer
vector-calibrated large-signal measurement system
[8]. Both models were implemented in MDS and
smulated under dc, smal and large-signa
excitations. Figure 2 shows a comparison
between measured and simulated using model 2 s-
parameters in the range 0.5 GHz to 118.5 GHz.
Excdlent agreement can be observed up to 118.5
GHz. Assuming the use of the same delay in both
models, figure 3 shows the intrinsc y;; VSs.
frequency measured and ssimulated using models
1 and 2. Vey little difference can be observed
even a very high frequencies, confirming that
model2 is a very good approximation of model 1.
Figure 4 compares measured and simulated output
power levels versus input power for the
fundamental (16 GHz) and second harmonic

using model2. Similar excellent results have been
obtained in the range of fundamental frequencies
checked from 2 to 20 GHz. Figure 5 compares
measured and simulated large-signa dynamic
loadline at a fundamental frequency of 20 GHz.
Not only the rf global behaviour can be predicted
using both models but also the rf dynamic
behaviour and the static dc bias point. The last is
possible due to the inclusion of the low-frequency
dispersion in the model formulation (as discussed
later). In the case of working in the low-
frequency range, even if these models can
accurately predict device behaviour, we can
further simplify model formulation. Figure 6
shows the good agreement obtained using an
extrindc model based on eq. 1 but considering
only pure quasi-static charge nonlinear relations
(as in [1]). If we aso drop in this extrinsc
approach  the  low-frequency  dispersion
modelling, using a single current generator in
each port, thereisalossinthe accuracy of the dc
current prediction, as can be seeninfigure 7.
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Figure 4: Measured (triangles) and simulated (line)
fundamental (dBm) and second harmonic(dBc) power levels.
0.15x120 pum?2 P-HEMT. Fundamental freq. 16 GHz
Bias: Vgs0=0.3 V, Vds0=0.5 V.

CONCLUSIONS

Two similar nonquasi-static modelling approaches
have been implemented and discussed. In both,
model extraction and implementation are
extremely smple. They can be extracted from dc
and small-signal s-parameters. Excellent results
have been obtained with P-HEMT devices under
small and large-signa excitation. Both can be
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successfully used from dc up to a least the fr
frequency of the device.
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Figure 6: Measured (triangles) and simulated (line) output
power levels vs. input power. 100x0.6 pm?> P-HEMT
device. Modd extraction: 2GHz. Fundamental freg.: 2GHz.
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Figure 7: Output dc current (mA/mm) vs. input power
measured (triangles) and simulated using an extrinsic
approach with (thick line) and without (thin line) the low-
frequency dispersion modelling. 100x0.6 um? P-HEMT
device. Model extraction: 2GHz. Fundamental freq.: 2GHz.
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